

 Page 1 of 32 “Build Forge Support Whitepaper”

Rational Build Forge General Maintenance

Understanding Maintenance needs for Production Environments

William Frontiero & Joseph Bucanelli

August 18, 2011

 Page 2 of 32 “Build Forge Support Whitepaper”

1 INTRODUCTION .. 3

2 OVERVIEW OF THE TOPIC ... 4

TOPIC #1 WEB SERVER (PHP / APACHE / IHS) MANAGEMENT 4
TOPIC #2 APPLICATION SERVER (TOMCAT / WAS) MANAGEMENT 4
TOPIC #3 MANAGEMENT CONSOLE SETTINGS .. 4
TOPIC #4 DATABASE / ENGINE MANAGEMENT ... 4

3 TOPIC COMPONENTS AND DEFINITIONS .. 5

WEB SERVER #1 (HTTP SERVER FOR WEB INTERFACE) ... 5
APPLICATION SERVER #2 (SERVICES LAYER) .. 5
MANAGEMENT CONSOLE #3 (MC) ... 5
DATABASE #4 (DATA WAREHOUSE) ... 6
ENGINE #5 .. 6

4 MANAGEMENT OPTIONS (PER COMPONENT) 7

WEB SERVER #1 (HTTP SERVER FOR WEB INTERFACE) ... 7
APPLICATION SERVER #2 (SERVICES LAYER) .. 11
MANAGEMENT CONSOLE #3 .. 16
DATABASE / ENGINE MANAGEMENT #4 ... 24

5 UTILITIES FOR RESOURCE PLANNING WITH BUILD FORGE 28

SAMPLE DATABASE RESOURCE USAGE WORKSHEET ... 30

6 REFERENCES ... 32

 Page 3 of 32 “Build Forge Support Whitepaper”

1 Introduction
This whitepaper is designed as a supplement to the Build Forge Online Help

Documentation. This document should not be seen as a replacement for the

Online Help Manual. Build Forge Administrators and Release Engineering teams

should review this document before making any changes to a new or existing

environment. The information supplied is not based on IBM recommendations.

This white paper is intended to assist in creating scalable and manageable Build

Forge environments. The paper is broken down into individual components due to

certain software requirements. Build Forge out of the box requires: Database

backend, Java Application Server (Tomcat), Web Server (Apache with PHP), and

Precompiled Perl Executables (Perl Engine). Each component has its own unique

options when considering management and scalability.

After reviewing this whitepaper, apply changes to a test environment before

releasing in production. Some of the topics discussed in this paper result in data

removal and aggressive purging. Please note that these topics should be

discussed prior to implementation.

 Page 4 of 32 “Build Forge Support Whitepaper”

2 Overview of the topic

 Topic #1 Web Server (PHP / Apache / IHS) Management

- What files are crucial to the Build Forge Application

- What Directives are Required for Build Forge Operation

- What Log files contain Build Forge specific information

- Manually stopping and starting the Web Server Component

 Topic #2 Application Server (Tomcat / WAS) Management

- Install / Configuration / Web Application / Logs

o WebSphere

 Windows

 Unix/Linux

o Tomcat

 Windows

 Unix/Linux

- Manually Starting and Stopping the Application Server Component

o WebSphere

 Windows

 Unix/Linux

o Tomcat

 Windows

 Unix/Linux

 Topic #3 Management Console Settings

- Manifest / Server Test / Max Processes / Max Jobs (How this impacts the

system)

- Managing System Messages

- Managing Purge options (Project/Build Level)

- Managing Step log information to reduce Database size

- Know what is scheduled

 Topic #4 Database / Engine Management

- Where are the Database Logs (What logs require Management)

- Where are the Engine Logs (When should they be archived)

- Where are the Build Forge Tables (What tables should we monitor)

- What is a Schema and why should we care about it

- How to ensure my Schema is up to date

- How to predict and monitor a healthy database growth rate

 Page 5 of 32 “Build Forge Support Whitepaper”

3 Topic components and definitions

Web Server #1 (HTTP Server for Web Interface)

HTTP Server (Apache or IHS) is necessary for hosting the Build Forge

Management Console. By Default the Web Server will listen for HTTP traffic on

Port 80. The Build Forge Management Console is designed to run on Apache Web

Server (Apache) or IBM HTTP Server (IHS). The Web Server Component by

default is installed to:

 Windows: <BF_HOME>\Apache\....

 Unix/Linux: <BF_HOME>/server/apache/…

Application Server #2 (Services Layer)

Java Application Server (Tomcat or WebSphere Application Server) is necessary

to host the Java Services Layer. The Application Server is a Java based Server

listening on both secure and non-secure API TCP ports (Default: Secure 49150,

unsecured 3966) and UI TCP ports (Default: Secure 8443, unsecured 8080 for

Tomcat, Default: Secure 9443, unsecured 9080 for WebSphere Application

Server). Build Forge Installation by default will install Tomcat and deploy the

Services Layer Web Application.

- Web Server Component default installation Path

o Windows: <BF_HOME>\Apache\tomcat\...

o Unix/Linux: <BF_HOME>/server/tomcat/…

- Services Layer Web Application default deployment Path

o Windows: <BF_HOME>\apache\tomcat\webapps\rbf-services\...

o Unix/Linux: <BF_HOME>/server/tomcat/webapps/rbf-services/…

- Services Layer default URL:
o https://<bf_Server_host_name>:8443/rbf-services

Management Console #3 (MC)

The Server Side Web Application is written primarily in html/PHP/JavaScript. The

MC is hosted by the Installed Web Server (Apache or IHS). The MC is used as a

central point of Build Forge Administration and general usage. The Management

Console was originally designed to make direct Database calls via PHP and

Database vendor specific SQL drivers.

- MC URL structure: (Default Install)
o http(s)://<bf_Server_host_name>:<web_server_port>

 Web Server Port 80 for non SSL (unsecured)

 Web Server Port 443 for SSL (Secure)

- MC Install location: (Default Install)

o Windows: <BF_HOME>\webroot\...

o Unix/Linux: <BR_HOME>/webroot/…

 Page 6 of 32 “Build Forge Support Whitepaper”

Database #4 (Data Warehouse)

Database as implemented by Build Forge: The Database is a central point of data

warehousing for all Build Forge information and configuration needs. The

Database must be one of 4 vendors, Oracle, DB2, MySql or Microsoft SQL Server.

Review Build Forge 7.1.2.X Database Requirements.

Build Forge also requires the Vendor specific Client libraries for Perl and PHP

database access and JDBC driver for the Java Services Layer.

Engine #5

The Build Forge Engine comprises of Perl and Java based components responsible

for executing and automating tasks configured by the Management Console. The

Engine is still primarily Perl based when executing Build Forge Jobs and

interacting with Agents at runtime.

Here is a list of Engine Components found in the Build Forge Install Directory

 Windows <BF_HOME>*

o bfmessages.exe

o bfproject.exe

o bfpwencrypt.exe

o bfrefresh.exe

o bfservertest.exe

o bfstepcmd.exe

o buildforge.exe

 Unix/Linux <BF_HOME>/Platform/*

o bfmessages

o bfproject

o bfpwencrypt

o bfrefresh

o bfservertest

o bfstepcmd

o buildforge

http://publib.boulder.ibm.com/infocenter/bldforge/v7r1m2/index.jsp?topic=/com.ibm.rational.buildforge.doc/topics/reqs_database.html

 Page 7 of 32 “Build Forge Support Whitepaper”

4 Management Options (Per Component)

Web Server #1 (HTTP Server for Web Interface)

1.) What Files are Crucial to the Build Forge Application

To administer and manage the HTTP server, you must review the Server’s

Master Configuration File. This files purpose is to configure the Web Server

on startup. (httpd.conf)

o File location in a Default installation of Apache

o Windows: <BF_HOME>\apache\conf\httpd.conf

o Unix/Linux: <BF_HOME>/server/apache/conf/httpd.conf

The httpd.conf file is used by the web server at start time. The httpd.conf

file is made up of individual directives. Directives are instructions which

the web server follows for general operation. Any and all uncommented

directives found in the httpd.conf file are added to the web servers

running configuration on startup. The httpd.conf file also makes reference

to two other configuration files needed for Build Forge operation. The first

of the two is the php.ini file. This configuration file instructs the Web

Server on what php capabilities should be available at runtime. The php.ini

file also contains key directives needed for Build Forge management.

o File Location for php.ini reference

o Windows: <BF_HOME>\Apache\php\php.ini

o Unix/Linux: <BF_HOME>/server/apache/conf/php.ini

The second of the two httpd.conf file references is the ssl.conf file. This file

instructs the Web Server about the SSL configuration to include at

runtime. This file contains key directives necessary for listening for https

requests and managing secure connections.

o File Location for ssl.conf reference

o Windows: <BF_HOME>\Apache\conf\ssl\ssl.conf

o Unix/Linux: <BF_HOME>/server/apache/conf/ssl/ssl.conf

2.) What Directives are required for Build Forge Operation?

Key Directives in the httpd.conf file:

 ServerRoot – Identifies the Web Server Installation root directory.

Example: ServerRoot “/opt/ibm/buildforge/server/apache”

 DocumentRoot – responsible for identifying the root directory

containing web content (html / PHP / JavaScript …)

Example:
DocumentRoot “/opt/ibm/buildforge/webroot/public”

 PHPIniDir – Identifies the location of the php.ini file. The php.ini file

contains PHP server configuration information needed by the Web

server on startup. Instructs the Web Server where to find the PHP

server configuration for serving PHP web content.

Example:
PHPIniDir “/opt/ibm/buildforge/server/apache/conf”

 LoadModule php5_module – Instructs the server to load the php5

module required for Serving PHP content. The directive identifies

the location of the php5 library on the file system (.dll or .so)

Example: LoadModule php5_module modules/libphp5.so (or .dll)

 Page 8 of 32 “Build Forge Support Whitepaper”

 Listen – Instructs the server to listen on a given port for HTTP or

HTTPS traffic.

Example: Listen 0.0.0.0:80

 ServerName – Used for redirection URLs

Example: ServerName localhost:80

 AddType – Instructs the server to listen and serve web requests for

identified additional file extensions (in addition to html, htm, ...)

Example: AddType application/x-httpd-php .php

 LoadModule ssl_module – Instructs the Server to load the SSL

module utilized by https requests to the web server.

Example: LoadModule ssl_module modules/mod_ssl.so (or .dll)

 <IfModule ssl_module> …. </IfModule> - Instructs the server to

include any enclosed directives if the SSL Modules is loaded.

Example: <IfModule ssl_module>
Include conf/ssl/ssl.conf

SSLRandomSeed startup builtin

SSLRandomSeed connect builtin

 </IfModule>

 Key Directives for the php.ini configuration file

 Memory_limit – Instructs PHP to use a maximum of the defined

value (Can result in errors and is often increased to 512 or greater)

Example: memory_limit = 512M

 session.save_path – Instructs PHP where to save session

information for user http sessions

 The Build Forge UI uses a three part scheme for controlling

user sessions

 Client Browser cookie

 PHP session

 DB entry

Example: session.save_path = “C:\IBM\buildforge\tmp”

 include_path – Instructs PHP where to look for included modules

Example:
include_path=".;C:\IBM\buildforge\Apache\php\pear”

extension_dir – Instructs PHP where to find extensions crucial for

php extended usage and integration. This directory will contain the

database specific extensions needed for build forge usage

Example:
extension_dir = “C:\IBM\buildforge\Apache\php\ext”

 extension – Instructs PHP which extensions to load on startup

Examples: ;extension=php_ibm_db2.dll

;extension=php_mssql.dll

;extension=php_mysql.dll

;extension=php_mysqli.dll

;extension=php_oci8.dll

 Example for PHP Open SSL Extension:
 extension=php_openssl.dll

 file_uploads – Instructs PHP to allow or block file uploads to the

server

Example: file_uploads = On

 upload_tmp_dir – Instucts PHP where to save uploaded files locally

on the server

 Example: upload_tmp_dir = "C:\IBM\buildforge\tmp"

 Page 9 of 32 “Build Forge Support Whitepaper”

 upload_max_filesize – Instructs PHP to limit the maximum file size

for uploads to the server

Example: upload_max_filesize = 2M

 default_charset – Instructs PHP to default any character encoding

to the defined value

Example: default_charset = "utf-8"

 error_log – Instructs PHP where to publish any errors encountered

during startup and web interaction

Example: error_log = "C:\IBM\buildforge\Apache\logs\php_error.log"

 Key Directives for the ssl.conf configuration file

 SSLEngine – Instructs the SSL engine to be enabled or disabled for

any or all virtual hosts controlled by the Web Server

Example: SSLEngine on

 Listen – Instructs the Web Server to listen for https traffic on the

specified port

Example: Listen 0.0.0.0:443

 SSLCertificateFile – Instructs the Web Server where to find the SSL

Certificate file

Example:
SSLCertificateFile ../keystore/buildForgeCert.pem

 SSLCertificateKeyFile – Instructs the Web Server where to find the

server Private Key file

Example: SSLCertificateKeyFile ../keystore/buildForgeKeyForApache.pem

 SSLCACertificateFile – Instructs the Web Server where to find the

Certificate Authority files

Example: SSLCACertificateFile ../keystore/buildForgeCA.pem

 <VirtualHost *:443> …. </VirtualHost> - Instructs the Web Server

to apply SSL configuration to all virtual hosts listing on port 443

Example Build Forge Directives within <VirtualHost *:443>

 DocumentRoot "C:/IBM/buildforge/webroot/public"

 ServerName localhost:80

 ServerAdmin support@buildforge.com

 ErrorLog logs/error_log

 TransferLog logs/access_log

 ………

 Page 10 of 32 “Build Forge Support Whitepaper”

3.) What Log Files Contain Specific Build Forge Information

There are multiple Log files within the Web Server that contain Build Forge

Specific information. The Build Forge Management Console Web Site

generates Apache http request/response, SSL Connection and PHP

request/response information. This means multiple logs files will be

touched when accessing Build Forge Site Specific locations.

Below are the log files that should be monitored according to file size

o Unix/Linux: <BF_HOME>/server/apache/logs/*

o Windows: <BF_HOME>/Apache/logs/*

 access.log

 access_log

 error.log

 error_log

 php_error.log

 ssl_request_log

4.) Manually Starting and Stopping the Web Server Component

The following information describes how Apache or IHS Web Server

platforms can be manually started on Build Forge Systems. There are

situations where debugging can be easier when starting individual

Components on the Build Forge server. Before starting individual Build

Forge components manually, ensure all running Build Forge Components

are stopped.

 - Startup and Stop options for IHS and Apache Web Servers

o Windows Apache
o <BF_HOME>\Apache\bin\ httpd.exe

o To Stop, terminate any and all child/parent httpd.exe

processes

o Windows IHS
o <IHS_Install_Root>\bin\httpd.exe

o To Stop, kill the windows running the process

o Unix/Linux Apache (Start and Stop Aache)
o <BF_HOME>/server/apache/bin/apachectl start

o <BF_HOME>/server/apache/bin/apachectl stop

o Unix/Linux IHS
o <IHS_Install_Root>/bin/apachectl start

o <IHS_Install_Root>/bin/apachectl stop

 Page 11 of 32 “Build Forge Support Whitepaper”

Application Server #2 (Services Layer)

1.) Install / Configuration / Web Application / Logs

 WebSphere (WAS)

o Install

 The Build Forge Content installed under WebSphere will

exist within the deployed scope. The Following example

demonstrates where the rbf-services, BuildForgeHelp and

rafw “ear and war” files are typically deployed.

 Install Locations:
“profiles/standAlone/installedApps/standalone/rbf-services.war.ear”

“profiles/standAlone/installedApps/standalone/BuildForgeHelp_war.ear”
“profiles/standAlone/installedApps/standalone/rafw_war.ear”

o Configuration (This section assumes being logged into WebSphere

Application server Admin console)

 WARNING!!! Please reference the Latest Installation Guide

or Online help for any configuration updates or changes to

Build Forge Deployment on WebSphere Application Server

 When working with WebSphere Configurations, please

ensure all configured objects are created at the Build Forge

Application Server Scope. This ensures all configured

objects are available to the Build Forge Server at runtime.

 Configure Application server Ports

 Application Servers -> server1 -> Ports

o WC_defaulthost

 9080

o WC_defaulthost_secure

 9443

 Configurable options within the rbf-services Application

 Enterprise Applications -> rbf-services_war

o Context Root For Web Modules

 Web Module
 A Services Layer Login Servlet

 URI

 rbf-services.war,WEB-

INF/web.xml

 Context Root
 /rbf-services

o Initialize Parameters for Servlets

 Service Layer Login Servlet

 port 3966

 sslPort 49150

o Shared Library References (CONFIRM SCOPE)

 Service Layer JDBC Library reference

 RBF_JDBC_LIBRARY

 Path to Vender JDBC Driver

 WebSphere Variables -> RBF_JDBC_DRIVER_PATH

o Path to Vender JDBC Jars (DB2 Example)

 /home/build/sqllib/java

 Shared Libraries -> RBF_JDBC_LIBRARY

o Ensure Scope is accurate

 Page 12 of 32 “Build Forge Support Whitepaper”

 cells:standAlone:nodes:standAlone:ser

vers:svr1

o Class Path (db2 examples)
 ${RBF_JDBC_DRIVER_PATH}/db2jcc.jar
 ${RBF_JDBC_DRIVER_PATH}/db2jcc_license_cu.

jar

o Web Applications

 Within the Installed *.war.ear directories resides the Build

Forge Deployed Web Applications. There are a few key files

within the deployed Content that are worth noting

 FlexHelper binary (Platform and OS Specific)

o ./rbf-services_war.ear/rbf-services.war/bin/*

o This is the Flexlm License utility used by Build

Forge to pull Flexlm licenses from a Rational

License Server

o This binary must be started for the Services

Layer to pull a license.

 buildforge.conf (Contains BF configuration info)

o ./rbf-services_war.ear/rbf-services.war/WEB-

INF/classes/buildforge.conf

o This file contains database connection

information used on startup

o The file also contains descriptive information

about the services port and other URL’s

identifying location of the Services Layer

o Logs

 WebSphere Application Server logs will be generated in

four significant files for Build Forge usage

 (SystemOut, SystemErr and start/stopServer)

 Typical Log File location: (Example standAlone install)

 /WAS/70/AppServer/profiles/standAlone/logs/server1

 SystemOut.log and startServer log are worth investigating

when experiencing any unusual license or startup

behavior.

 Tomcat

o Install

 Build Forge by default will Install Tomcat to:

 Windows:
o <BF_HOME>\apache\tomcat

 Linux:
o <BF_HOME>/server/tomcat

o Configuration

 WARNING!! The Tomcat Configuration information below is

for reference only. This Build Forge Installation will

perform any necessary configuration needed in Tomcat.

This information is for management and troubleshooting

purposes if needed.

 Tomcat will default many Service Layer Configuration

Options after installation.

 Web Context Root defaulted on webapp deployment

 /rbf-services

 <tomcat_home>/webapps/rbf-services

 Application Server Ports

 Page 13 of 32 “Build Forge Support Whitepaper”

 <tomcat_home>/conf/server.xml

o Non SSL
 <Connector port=8080 …/>

o SSL
 <Connector port=8443 …/>

 Application Server Host Name

 <tomcat_home>/conf/server.xml
o <Engine … defaultHost="localhost" …/>
o <Host name="localhost" …./>

 To Configure Web Application Specific settings

 <tomcat_home>/webapps/<webapp_dir>

o Example ./webapps/rbf-services/*

 Build Forge Service Layer Configuration Options (web.xml)

 ./rbf-services/WEB-INF/web.xml

o Set Service Layer Ports (SSL and Non-SSL)
 <param-name>port</param-name>
 <param-value>3966</param-value>
 <param-name>sslPort</param-name>
 <param-value>49150</param-value>

 ./rbf-services/WEB-INF/classes/buildforge.conf

 Set any Build Forge parameters accurately for the

Services layer to contact necessary runtime

resources (db user/pass server hostname and ports)

o Web Applications

 All Web Applications will reside under

 Windows:
o <BF_HOME>\apache\tomcat\webapps

 Linux:
o <BF_HOME>\server\tomcat\webapps

 Build Forge and RAF specific Web Applications

 Services Layer

o rbf-services (rbf-services.war)

 rafw Environment Generation Wizard

o rafw (rafw.war)

 rafw Remote UI Services

o rafservices (rafservices.war)

 Build Forge Help

o BuildForgeHelp (BuildForgeHelp.war)

o Logs
 <tomcat_home>/logs/catalina.<date>.log

 <tomcat_home>/logs/rafw.<date>.log

 Each time build forge is restarted, a new Log file is

generated.

 Please remove or cleanup any unwanted log files.

 The logs directory is worth scheduling for cleanup for files

older than a desired date

 Page 14 of 32 “Build Forge Support Whitepaper”

2.) Manually Starting and Stopping the Application Server Component

 WebSphere (This will stop and start the Dedicated Application Server)

o WARNING: This procedure will not stop the individual

Applications!!!

o Windows (start / stop)
 <WAS_HOME>\profiles\<profile>\bin\startServer.bat <svrName>
 <WAS_HOME>\profiles\<profile>\bin\stopServer.bat <svrName>

o Unix/Linux (start / stop)
 <WAS_HOME>/profiles/<profile>/bin/startServer.sh <svrName>
 <WAS_HOME>/profiles/<profile>/bin/stopServer.sh <svrName>

o Example:
 /WAS/70/AppServer/profiles/standAlone/bin/stopServer.sh server1

ADMU0116I: Tool information is being logged in file
/WAS/70/AppServer/profiles/standAlone/logs/server1/stopServer.log
ADMU0128I: Starting tool with the standAlone profile
ADMU3100I: Reading configuration for server: server1
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server server1 stop completed.

 Tomcat (This will stop and start the Tomcat Application Server)

o WARNING: This procedure will not stop the individual

Applications!!

o Windows (start / stop)

 Before manually stopping and Starting Tomcat, you must

copy <tomcat_home>\bin\catalina.bat.template to

<tomcat_home>\bin\catalina.bat

 Make the following changes in catalina.bat
 set CATALINA_HOME=<BF_HOME>\Apache\tomcat

 set JAVA_HOME=<BF_HOME>\ibmjdk

 After modifying the file, ensure all other Build Forge

Components are stopped

 Start Server with the following command:

 <tomcat_home>\bin\startup.bat

 A new shell will open which must not be closed

 You can further startup Apache Web Server and

the Build Forge Engine

 You can stop the server with:

 <tomcat_home>\bin\shutdown.bat

 Example Startup:
C:\IBM\bf_mssql\Apache\tomcat\bin>startup.bat
Using CATALINA_BASE: C:\IBM\bf_mssql\Apache\tomcat
Using CATALINA_HOME: C:\IBM\bf_mssql\Apache\tomcat
Using CATALINA_TMPDIR: C:\IBM\bf_mssql\Apache\tomcat\temp
Using JAVA_HOME: C:\IBM\bf_mssql\ibmjdk
C:\IBM\bf_mssql\Apache\tomcat\bin>

o Linux/Unix

 Before manually stopping and starting Tomcat

Application server, you must copy

<tomcat_home>/bin/catalina.sh.template to

<tomcat_home>/bin/catalina.sh

 Add the following lines to the catalina.sh script

 JAVA_HOME=<BF_HOME>/ibmjdk

 CATALINA_HOME=<BF_HOME>/tomcat

 After modifying catalina.sh ensure all build forge

components are stopped

 Start the Tomcat Server with the following command:

 <tomcat_home>/bin/startup.sh

 Page 15 of 32 “Build Forge Support Whitepaper”

 Look for new processes running via catalina and

or java binaries running from the JAVA_HOME

location

 You can now startup the Apache Web Server and

Build Forge Engine Components

 You can then stop the server with:

 <tomcat_home>/bin/shutdown.sh

 Example startup:
[root@bfSvr bin]# ./startup.sh
Using CATALINA_BASE: /opt/buildforge/server/tomcat
Using CATALINA_HOME: /opt/buildforge/server/tomcat
Using CATALINA_TMPDIR:/opt/buildforge/server/tomcat/temp
Using JAVA_HOME: /opt/buildforge/server/ibmjdk
Using JRE_HOME: /opt/buildforge/server/ibmjdk

 Page 16 of 32 “Build Forge Support Whitepaper”

Management Console #3

 1.) Manifest / Server Test / Max Processes / Max Jobs

Manifests:

Manifests represent the container for the story you tell about the server

using the collector. The selector reads from this container, and collectors

write to it. There is no communication between the collector and selector

directly. As a result the selector is dependent upon the information in the

manifest being accurate and up to date. There are a number of global

Admin > System values which control how up to date the manifest is.

Testing a server

To perform a diagnostic test:

 Click Servers–> ServerName.

 Click Test Connection.

 A server connection test is performed and the server manifest is

updated.

Configuring system settings for the management console

Evaluate these system settings before you start creating server definitions

and running jobs to decide whether the settings can benefit your

environment. Your usage pattern determines the values of these settings.

This section helps you determine those values.

SMTP Server: This setting determines which mail server Rational Build

Forge uses to send outgoing mail notifications. If your management

console is in a network behind a firewall, the value of this setting should

be the mail relay server for the network, and you should discuss the

setting with your network administrators.

Run Queue Size: This setting controls how many jobs the management

console attempts to run at any given time. The default value is 3, which is

a fairly conservative number. If your console has four processors, a value

of 3 might be too small. Consider that none of the Rational Build Forge

processes is likely to use 100% of any processor. If you do not run many

threaded steps in your jobs, the highest processor utilization you will see

will be about 25% for any given job. With such low utilization of four

processors, you could increase your Run Queue Size. Plan on one

processor for the Rational Build Forge system processes, and then divide

the remaining number of processors by the expected processor utilization.

Next, reduce the size slightly to ensure you do not overload the

management console. With the above example, set the Run Queue Size to

10. (Four processors minus one for management console system

processes is 3. Divide 3 by 25% to get 12. Add a little safety room, and 10

is an adequate setting.)

WARNING: Setting this value too low limits the ability of your console to

run projects in parallel. Setting this value too high might have a negative

impact on your system performance. Using an incremental approach has

 Page 17 of 32 “Build Forge Support Whitepaper”

proven successful in the past. You could start at 5 and step up by 5 to

determine the best value for your use.

Max Console Procs: This setting controls the maximum number of

processes that the management console runs at one time. If you set this

value too low, your Run Queue Size setting becomes ineffective. If you set

this value too high, the stability of the computer that runs your

management console might be affected. A good initial value for this

setting is 10 + Run Queue Size + Max Simultaneous Purges. So for our

earlier examples, set this value to 30.

As of version 7.1.2, only buildforge.exe and bfproject.exe are considered

processes started by the console. For optimal behavior, use a value at

least 1 higher than Run Queue Size, which is covered next. By default, this

setting is 25.

Max Simultaneous Server Tests: As of Rational Build Forge version

7.1.2, server tests are completed through the Java services layer. As such,

the tests have a much smaller footprint on the system resources.

Consequently, you can use a number for this setting larger than the

default value of 6. Typically, you need a higher number of concurrent

server tests if your environment has a large number of computers restart

often. In this case, you require constant server tests to tell Rational Build

Forge when the servers are back online.

 2.) Managing System Messages

AutoClean settings: The AutoClean settings determine how long to

retain system messages of different types. These are the settings and the

related messages:

AutoClean Error Log Days: Error messages help determine faults within

the management console. These messages typically account for less than

1 percent of the total message count. The default value is 0, indicating the

system never deletes these messages. Because the impact of this

message type is so low, leave the value set at 0.

AutoClean Warning Log Days: Warning messages can help determine

faults or decide when to perform maintenance. The warning messages

account for around 10 percent of the overall message count. By default,

these messages are also kept for 120 days; however, the impact is much

less than the information messages.

AutoClean Audit Log Days: Audit messages can let you know when

security settings have been changed. Keep them longer. In a typical

system, audit messages account for around 20 percent of the total

message count. The default setting is 365 days.

AutoClean Info Log Days: Info messages act as a log of activity on the

system. These messages will be quite numerous. Typically, you do not

refer to these messages after a few days. Information messages account

for approximately 70 percent of the overall message count. This setting

has the most impact in your environment. The default count is 120 days,

which is too long for most installations. Typically, you should keep 7 to 14

days of information.

 Page 18 of 32 “Build Forge Support Whitepaper”

All of these messages help you understand what is going on in your

management console, but the default settings are for a large organization

with a high-performance database server with requirements to keep

messages for long periods. Typically, you do not require that any of these

messages be saved for more than 30 days. Perhaps you only require them

for a few days.

WARNING: The AutoClean log settings are set very high by default. As a

result, Rational Build Forge tends to store a large amount of the system

messages within the database. Modify these numbers to fit your

company’s use case.

WARNING: Changing these settings can significantly impact system

performance. The AutoClean logs will attempt to delete any and all

messages older than the set number of days. This means a large scale

purge could result in poor system performance and reliability issues.

It is strongly recommended to incrementally reduce the time to keep

messages. (Example: Start with a high number of days allowing the purge

to be throttled over time.)

It is also recommended that you make each AutoClean number of days

different. This assists in distributing purge scheduling for different types of

message information.

Database Size Threshold and Database Size Threshold Notification:

These settings serve as an early warning system. Rational Build Forge

sends a notice to the address specified in Database Size Threshold

Notification when the database exceeds the disk size in the Database Size

Threshold setting.

The Database Size Threshold setting has a default value of 2 GB, which is

too low for most Rational Build Forge environments. Set the value to 80%

of the maximum amount of the disk space available to the data files of the

database. Using this value provides time to take corrective actions before

running out of disk space.

3.) Managing Purging at Project Level

Max Simultaneous Purges: This setting controls how many purges can

run at the same time. Adjust this value to ensure that purges are

completed in an acceptable period of time without affecting the

performance and usability of the management console. The more purges

that run at the same time, the busier and less responsive your

management console is. If you have a large computer hosting your

management console, this setting will not matter as much. Similarly, if

you schedule your purges to run during off hours, the performance is not

as large an issue. However, if your management console has international

users and is used at all hours, set this value to a smaller number to

maintain usability of the management console. Be careful not to set the

value so small that your purges cannot be completed faster than new jobs

are added. For example, if you are running 20 jobs an hour and your jobs

take 12 minutes to purge each, you would need to run at least four purges

 Page 19 of 32 “Build Forge Support Whitepaper”

concurrently. Adding a safety factor to this value, for this example, start at

10 Max Simultaneous Purges.

WARNING: Setting this number higher allows a larger number of purges

to occur concurrently; however, it also reduces build performance.

Configuring classes to purge schedules and start related projects

Rational Build Forge uses classes to determine different attributes of both

running and completed jobs. For example, you can start a project as a

chain when changing into or out of any given class. You can use this

feature to have Rational Build Forge deploy built software to be tested.

Classes also determine how soon builds are purged.

Consider defining a few basic types of classes: short-term, mid-term, and

long-term.

You might assign a short-term class to a build that happens every day to

send a status email or clean files on build servers. You might assign a

short-term class to purge jobs after one day. Frequent purging is useful

for jobs that are not required for logging purposes and for jobs that do not

generate important output.

A mid-term class might have a purge time of a few weeks. Use this class

for daily builds that you keep an eye on and perhaps check for changes

after a few days. However, do not use this class for builds that you need

to keep forever.

A long-term class might be set to never purge. For example, if you

released software to the public that was built from your management

console, you would likely want to keep that build forever. Setting the build

to such a long-term class is one way to accomplish that.

Configure classes shortly after you start running builds to maintain order

in your completed jobs and to keep completed jobs from cluttering your

database.

 4.) Managing Step log information to reduce Database size

 There are two commonly used methods for managing step log information,

 purging, and utilizing bfbomexport.

 The best way to purge old log entries is to set up a class to do so. This

 class can be set up to meet your criteria - for example purge all builds

 older than 30 days. If the class does not have Everything or Console Data

 specified for the items it will purge the build becomes archived. You can

 then clear out the archived builds through the Archived tab on the Jobs

 page.

 You will want to determine what your purge criteria will be - i.e. how often

 you would like to remove the builds. In some cases - such as continuous

 integration builds - you may only want to keep the last failed build. In this

 case you will use a very aggressive purge policy. In other cases - such as

 a release - the build needs to be maintained for possibly years. We cannot

 Page 20 of 32 “Build Forge Support Whitepaper”

 make recommendations on how often you purge as you know how long

 you need to keep certain builds around.

 The class mechanism is specifically designed to automate the process

 detailed above. When a purge check occurs it will look at each build for a

 class for each individual project. If the files to be deleted by the class not

 set up for Everything, logs, logs and files, or console data you will have

 build records left in the database under the Archive tab. Archive builds are

 no longer considered during the automatic purge process and must be

 manually purged.

There are various logs and messages BF keeps in the underlying database

and it is possible to change length of time these are kept in order to

systematically reduce the size of your database.

However in large corporations where some data needs to be kept for long

periods of time over many years or even forever, you will need to be able

to export logs out for archiving.

The bfbomexport tool has had log\BOM export tool as well which can be

used for this purpose - bfbomexport.

Usage: bfbomexport [-f filename] [-p projectId |-P projectName] [-b

buildId |-t buildTag] [-H]

options :

-f : file to write the output to.

-p : project Id of the build. -p or -P must be specified.

-P : project Name of the build.

-b : build Id to export the BOM of. -b or -t must be specified.

-t : build tag to export the BOM of.

-L : include Step logs.

-h : this help message.

 Keeping a low revolving database size can be very important to BF

 performance. Disk I/O can be dramatically affected with the number of

 concurrent builds. Considering that at any given time BF can be reading

 or writing to the DB, which is using the DB pipeline, the size of the DB

 directly affects the BF performance. The larger a DB becomes the more

 expensive write operations to the DB file become.

 5.) Know what is scheduled

 The scheduler in 702\7.1.1.x uses a simple algorithm to determine if a

schedule can be fired or not. Specifically it follows this pattern:

 1) Loads all the currently active schedules into memory

 2) Tests if the schedule should fire in this month

 3) If that passes, tests if the schedule should fire in this day of the month

 or week day

 4) If that passes, tests if the schedule should fire in this hour

 5) If that passes, tests if the schedule should fire in this minute

 6) If that passes, fire the build

 Page 21 of 32 “Build Forge Support Whitepaper”

 The schedule _has_ to match all five of those - down to the current

 minute. Now one of the weaknesses of the old scheduler is it does not test

 if the schedule should fire based on this current minute, or a minute in the

 past. To that end this is why we determine the entire cycle needs to be

 done for _all_ currently active schedules in under one minute. In 7.1.2 we

 use a proper thread, and scheduler class in the services layer to handle

 each schedule - it is not done in the same iterative fashion as Perl. As

 such the scalability is much higher, as well as the reliability.

 To see more specifically this schedule cycle requires killing the bfsched

 process, and starting it in its own shell, however the entire Build Forge

 process does not need to be restarted. The scheduler can run this way as

 long as needed. That being said two debug variables are needed. This will

 give us incredible insight into how long it takes for each scheduler cycle to

 complete.

 BFDEBUG_SCHED=1

 BFDEBUG_SQL_PREPARE=1

 Example of what we will see in the capture:

 A single scheduler cycle will be delimited by a long ----- line:

 6/7/2011 4:39:10 PM : Sched: 48124: -----------------------------------

 48124 PRE:[SELECT * FROM bf_engines WHERE bf_engineid=?]

 6/7/2011 4:39:25 PM : Sched: 48124: -----------------------------------

 In between is all the stuff that a scheduler normally gets to. If the time

 stamps for each ---- line exceed a minute, or even come close to a minute

 then we know the scheduler is being stressed too hard for 7.0.2 and the

 current workaround the customer is employing to fire off builds if they

 don’t fire can still be used.

 Sched: 48124: --

 6/7/2011 4:43:47 PM : Sched: 48124: Processing

 48124 PRE:[SELECT * FROM bf_users WHERE bf_userid=?]

 48124 PRE:[SELECT * FROM bf_accesscache WHERE bf_userid=0 OR

 (bf_userid=? AND bf_groupid=0)]

 48124 PRE:[SELECT bf_tzone FROM bf_users WHERE bf_userid=?]

 48124 PRE:[SELECT * FROM bf_tzones WHERE bf_zone=?]

 6/7/2011 4:43:47 PM : Sched: 48124: a: Month * match on 5

 6/7/2011 4:43:47 PM : Sched: 48124: a: Day * match on 7

 6/7/2011 4:43:47 PM : Sched: 48124: a: Weekday * match on 2

 6/7/2011 4:43:47 PM : Sched: 48124: a: Hour * match on 15

 48124 PRE:[SELECT * FROM bf_engines WHERE bf_engineid=?]

 6/7/2011 4:44:02 PM : Sched: 48124: -----------------------------------

 6/7/2011 4:44:02 PM : Sched: 48124: Processing

 48124 PRE:[SELECT * FROM bf_users WHERE bf_userid=?]

 48124 PRE:[SELECT * FROM bf_accesscache WHERE bf_userid=0 OR

 (bf_userid=? AND bf_groupid=0)]

 48124 PRE:[SELECT bf_tzone FROM bf_users WHERE bf_userid=?]

 Page 22 of 32 “Build Forge Support Whitepaper”

 48124 PRE:[SELECT * FROM bf_tzones WHERE bf_zone=?]

 6/7/2011 4:44:02 PM : Sched: 48124: a: Month * match on 5

 6/7/2011 4:44:02 PM : Sched: 48124: a: Day * match on 7

 6/7/2011 4:44:02 PM : Sched: 48124: a: Weekday * match on 2

 6/7/2011 4:44:03 PM : Sched: 48124: a: Hour * match on 15

 6/7/2011 4:44:03 PM : Sched: 48124: a: Minute */2 match on 44

 48124 PRE:[SELECT * FROM bf_cron b WHERE bf_cid=?]

 48124 PRE:[SELECT * FROM bf_store where bf_uid=? ORDER BY bf_part]

 48124 PRE:[SELECT * FROM bf_store where bf_uid=? ORDER BY bf_part]

 48124 PRE:[SELECT * FROM bf_users WHERE bf_userid=?]

 48124 PRE:[SELECT * FROM bf_accesscache WHERE bf_userid=0 OR

 (bf_userid=? AND bf_groupid=0)]

 48124 PRE:[UPDATE bf_cron SET bf_nextrun=0, bf_fired=? WHERE

 bf_cid=?]

 48124 PRE:[SELECT bf_pid,bf_class FROM bf_builds WHERE

 bf_process='B' AND bf_state='C' AND bf_stage != 'Break' ORDER BY

 bf_pid]

 48124 BF_STATE

 /PerlApp/BuildForge/Scheduler.pm(BuildForge::Scheduler):440 [SELECT

 bf_pid,bf_class FROM bf_builds WHERE bf_process='B' AND bf_state='C'

 AND bf_stage != 'Break' ORDER BY bf_pid]

 48124 PRE:[SELECT * FROM bf_engines WHERE bf_engineid=?]

 6/7/2011 4:44:18 PM : Sched: 48124: ---------------------------------------

 This part shows the evaluation of one schedule only. You can see where it

 matches on everything except for minute in the first cycle, and then

 matches on the minute in the following cycle prompting a build.

 In all the debug flags will give us an excellent idea on how efficient the

 current schedule count really is, and how much stress each schedule really

 provides on the overall schedule cycle.

 6.) Where is your License Server / How is it Configured

Build Forge stores the license server it points to within the database.

Update the License Server from Administration> System> License Server.

You can do this because the Web interface still functions even without a

license as long as you login as root. However, without a license you cannot

run any builds or other operations.

 There are two types of licenses in Build Forge: Floating and Authorized.

You can only have one type of license available in your environment since,

during startup, the engine picks up a single increment of user licenses,

which is either Floating or Authorized.

A Floating license seat is purged automatically during user log off, but an

Authorized is not. You can manually purge an Authorized license seat by

using Purge Seat within the Administration > Users menu.

notes:///85256D3B006346F6/494CC6E88F94056E852570B200711E30/3305AFEDDD9250608525740C00831326
notes:///85256D3B006346F6/494CC6E88F94056E852570B200711E30/3305AFEDDD9250608525740C00831326

 Page 23 of 32 “Build Forge Support Whitepaper”

Note: Using Purge Seat on a Floating license seat has the same effect as

logging off the user since either action will simply release the license seat.

 A brief summary of each license type

 Floating: These license seats are best thought of as a first come, first

served pool of seats that anyone can use. This allows an

oversubscribed model of users to access the server on the assumption

that not everyone will be working at the same time.Authorized: These

license seats represent a fixed number of specific users that can access

the system. This model explicitly does not allow the oversubscription

model and, as a result, cost less on a per-seat basis. This is similar to

an assigned seat logon scheme.

 Page 24 of 32 “Build Forge Support Whitepaper”

Database / Engine Management #4

1.) Where are the Database Logs (How to increase Debugging in

Logs)

The system stores database debugging information in a db.log file in the

Management Console installation directory. You should check the size of

this file on a monthly basis, and delete it if you need to free space on the

console computer. The db.log file is located in the BF home directory.

*** Delete the database log file regularly ***

2.) Where are the Engine Logs (How to increase Debugging in Logs)
Log file: BF_INSTALL_DIR/log (or run in foreground)

3.) What tables should be monitored?

 Tables grow with as the use of BF increases. There are methods to help

 keep these tables manageable. Below are a few tables to keep an eye on.

 Messages Tables

 bf_messages - System wide event log messages. The

 bf_messages table gets translated to allow for full message

 searches.

 bf_messagearg - The table which holds the string arguments to

 the keys defined in the bf_messages table.

 bf_message_translated - This table is used to manage the

 potentially large, fully-translated system message strings.

 Messages are pre-translated for query performance and scalability.

 Each message inthe bf_messages table becomes 10 rows in the

 bf_message_translated table. There is one row for each language

 BF currently supports.

 NOTE: There are two basic methods to keeping these tables small.

 1- Manually truncate the bf_messages table. This is very

 risky, and not always recommended. There are a number of

 tables involved which would need truncated.

 2- Use the system to purge messages.

 bf_store - This table is used to manage large strings that would otherwise

 overflow the database managers allowed sizes (and to avoid using the

 CLOB and BLOB SQL data types).

 Page 25 of 32 “Build Forge Support Whitepaper”

 Build Environment Tables

 bf_buildenv - Build Environments are per- build or per- schedule

 workspaces for manipulating environment group data without

 damaging the original. It is implemented by creating a deep copy of

 the environment group when the build record is created. This

 table will grow in proportion to the number of jobs executed and

 the number of environment variables associated with the project

 run.

 bf_buildenventry - Contains name/value pairs of environment

 variables associated with a particular build or schedule. These

 environment variables have been copied from bf_enventry in order

 to have a working copy where the environment variables can be

 stored and manipulated independently of the original. This table

 grows as the number of runs grows, increasing by the number of

 environment variable entries receive a value.

bf_buildenvopt - Build environment entry options. This table contains

the values that will be accepted for a build environment entry of the

PULLDOWN type. They were copied from bf_envopt to have them stored

so that the user is presented with the same choices from the pull down list

on build restart, even if the original environment entry has changed in the

meantime. This table will remain small.

 bf_results - The bf_results table contains all of the step scope pass\fail

 information normally found in a build log at the higher level If the

 bf_results table has rows in which the bf_bid does not exist in the

 bf_builds table then it has been orphaned. Purging through the user

 interface will no longer be possible and the rows will need to be manually

 removed. This will require an orphan removal tool, that can be supplied

 by BF support.

 bf_logs - This is where the step log information is stored. The unique key

 in this table is a combination of the bf_uid and bf_lid. The bf_log table is

 linked back to the bf_results table through the bf_uid. If the bf_uid from

 the bf_logs table no longer has a step listed in bf_results then the row in

 this table has been orphaned. There could be any number of entries for

 each bf_uid in the bf_logs table. If there are excessive amounts of

 orphans, a tool can be supplied to remove them. This table will grow

 massively if left unmanaged.

 bf_bom_manifests - This table is supplemental to the bf_bom table.

 There is the distinct possibility there are orphaned rows if the bf_logs

 contains orphans as well.

 NOTE: The best way to manage table sizes is to implement a strong purge

 schedule, utilizing aggressive purging as needed to keep the DB at

 manageable size.

 Page 26 of 32 “Build Forge Support Whitepaper”

4.) What is a Schema and why should we care about it.

A database schema is a collection of meta-data that describes the relations

in a database. A schema can be simply described as the "layout" of a

database or the blueprint that outlines the way data is organized into

tables. Schema are normally described using Structured Query Language

as a series of CREATE statements that may be used to replicate the

schema in a new database.

You can obtain detailed IBM Rational Build Forge schema information on

the database by using the bfschema tool.

 bfschema -g <path to output.html file>

bfschema is located in the BF home directory. Once you run the tool the

output file can be read using any http compatible browser.

5.) How to predict and monitor a healthy database growth rate

 In this section is a high level approach to creating a database Resource

Plan using analytical methods. All that is required is to plug in values for

simple arithmetic formulas. It is recommended that you consider the use

of a spreadsheet to simplify the process of performing the calculations,

leaving you free to concentrate on obtaining the input data, developing the

model, and validating the results.

Create the Test Schema:

To accurately gather database growth metrics, a new build forge user and

schema should be created. In the case of databases like Oracle, care

should be taken to ensure that the new schema has its own dedicated

table space. This will make gathering growth data less burdensome.

Create a Simulated Data Load:

When possible, actual build output logs should be incorporated into the

test project, so as to yield a more realistic Resource Plan. Additional data

that should be acquired includes the approximate number of steps in the

build project(s) and size of the log output.

This can be accomplished in a couple ways.

Supplied Build Log Output:

Integrate the supplied output log into the step of the test project. Having

the agent echo the contents of the log on the remote side will generate a

reasonable approximation of the amount of step log content as would be

seen in actual usage. This is the more accurate method for simulation of

usage, and thus is preferred.

Supplied Build Log Size Estimates:

If you are unable to obtain a previous log output, but have access to a size

estimation of log output, you can achieve the same result by creating a

dummy file of approximately the same size as the real logs. Again,

echoing this data in the agent will generate a reasonable approximation of

the amount of step log content as would be seen in actual usage. This

method is not ideal and not recommended when actual log output data is

available.

 Page 27 of 32 “Build Forge Support Whitepaper”

Create the Test Project:

The number of steps in the Test Project depends on the data supplied. If a

complete Build Log has been supplied, a single step may be sufficient at

providing a low-end Resource Plan. If using the alternate method,

additional steps and environment groups may need to be added to the

Test Project to more effectively simulate actual usage.

Capture the Initial Size:

The size of the database once Build Forge has been installed and the Test

Project created will need to be captured for factoring into later metrics. As

later metrics will center on database growth, the initial post-install

database size will need to be considered to create a more realistic usage

projection.

Calculate the Average Growth per Build Run:

To generate the Growth per Build Run, execute the Test Project N times.

Then capture the new database size, allowing time for the database to

write the data to storage. Subtract the Initial Size, and then divide by N.

This will give you the average growth per individual build run. Once you

have this figure, creating the Resource Plan is a relatively simple

procedure. The value of N should be a sufficient number to create a

statistically valid average. This could be a number as low as 50, or as high

as 200. In smaller output logs, N should be a number large enough to

cause a measurable change in database consumption. Also be aware that

overly large values of N will take an increased time to produce useful

metrics.

Create the Resource Plan:

In addition to the data captured, information on individual project build

schedules, release schedules, and data retention policies are required to

produce a Resource Plan on Build Forge database consumption.

1. Build Schedule: This is how many times per day a specific project is

run per day/week. This number will affect the total number of builds run

during a specified duration.

2. Release Schedule: Typically a Released build will be locked in the

Console, and its data must be taken into account when factoring the

Resource Plan.

3. Data Retention Policy: Tuning the purge policy is an easy way to

reclaim database resources in the long term, decrease Console page load

times, and make a Resource Plan more attractive. However, this should be

balanced against the need to retain data.

Using the supplied method in the next section: Utilities for Database

Resource Planning with Build Forge, create the Resource Plan predictive

model for database storage consumption.

 Page 28 of 32 “Build Forge Support Whitepaper”

5 Utilities for Resource Planning with Build Forge
The Resource Plan can be constructed using the formula below, combined

with the collected data to produce a minimum growth prediction for a

given duration.

 Build Size: The Average Database Growth per Build.

 Duration: The length of the metric in days.

Purge Policy: The minimum number of days a build logs to retain.

Archival Cycle: Process of locking one or more build logs for archival

retention.

Lock: Manually excluding a build log from the Purge Policy

Collected Data

 S = Approximate Build Size in Megabytes.

 B = Builds per day.

 D = Duration in days.

 P = Number of days in Purge Policy

 A = Number of days per Archival Cycle

Calculated Data

 K = Minimum number of build logs to be Kept per Purge Policy. [B*P]

 L = Number of build logs Locked over desired Duration. [D/A]

 R = Number of build logs Retained for desired Duration. [K+L]

 T = Total estimated growth of database for desired Duration. [R*S]

Utilize the collected data as follows:

Calculate the number of build logs kept for reference purposes K by

multiplying the builds per day B by the number of days defined by the

Purge Policy P. These build logs are used by developers and QA for

diagnostics and historical tracking.

Calculate the number of archived build logs L by dividing the length of

period desired in days D by the number of days per Archival Cycle A.

These build logs will be permanently retained and counted outside of the

build logs temporarily retained by the Purge Policy. (For example: 1 year

= 365 days, 30 day archival cycle, the result would be 365/30 or 12 builds

locked per year.)

Calculate the total number of build logs to be retained R by adding the

number of archived build logs L with the number of build logs kept for

reference purposes K. Within the desired duration, this is the probable

maximum number of build logs retained in the database storage.

Calculate the total estimated database growth for the desired duration T

by multiplying the number of build logs retained over the duration R by

the approximate size of database storage consumed per build log S. This

will yield an estimated database growth in megabytes.

Use the following worksheet to generate the database resource usage

figures. To project for multiple durations, a spreadsheet will be more

useful.

 Page 29 of 32 “Build Forge Support Whitepaper”

Database Resource Usage Worksheet

Collected Data

Symbol Description Value

S Approximate Build Size in Megabytes. S =

B Builds per day. B =

D Duration in days. D =

P Number of days in Purge Policy P =

A Number of days per Archival Cycle A =

 X =

 Builds per Day B Number of Days Build logs

 in Purge Policy P to be kept K

 / =

 Duration in days D Days per Archive Cycle A Build logs

locked L

 + =

 Build logs to be kept K Build logs locked L Build logs

Retained R

 X =

 Build logs Retained R Size in MB S Database

Growth in MB T

 Page 30 of 32 “Build Forge Support Whitepaper”

Sample Database Resource Usage Worksheet

The worksheet below uses an example Build Forge installation with one

project in an aggressive build environment consisting of 5 builds per day,

a 10 day informal release cycle, with a 90 day purge policy that produces

approximately 200 MB of Oracle database storage per job run. Remember

that most Build Forge installations include multiple projects. This

worksheet will need to be completed per project being evaluated.

 5 X 90 = 450

 Builds per Day B Number of Days Build logs

 in Purge Policy P to be kept K

 365 / 10 = 36.5

Duration in days D Days per Archive Cycle A Build logs

 locked L

 450 + 36.5 = 486.5

Build logs to be kept K Build logs locked L Build logs

 Retained R

 486.5 X 200 = 97,300

Build logs Retained R Size in MB S Total Database

 Growth in MB T

In the above example, with duration of 1 year, and the following the

policies as defined, the database would experience an estimated 97,300

megabytes of growth.

Collected Data

Symbol Description Value

S Approximate Build Size in Megabytes. S = 200 MB

B Builds per day. B = 5

D Duration in days. D = 365

P Number of days in Purge Policy P = 90

A Number of days per Archival Cycle A = 10

 Page 31 of 32 “Build Forge Support Whitepaper”

The following tables provide examples from constructed data using the

techniques detailed in the prior section of the document. This data should

not be used verbatim. A proper Resource Plan requires metrics from the

proposed installation environment to provide an accurate estimate.

Table 2: Database Growth Examples:

Disk Usage Oracle Mysql SQLServer DB2

Initial Db

size
22 MB 20 MB 8 MB 93MB

small Job

(10 steps)
6 MB 1.8 MB 980 K 860 K

Med. job

(50 steps)
35 MB 6 MB 4 MB 4 MB

large job

(100 steps)
80 MB 13 MB 8 MB 7.5 MB

This chart shows the estimated database growth with projects of varying

sizes.

Please keep in mind that database size is only one factor to consider when

choosing a database.

Note: The Build Forge Installation Guide recommends allocating initial data

and log file sizes of 500 MB, with an automatic increase of 500 MB on

some platforms.

 Page 32 of 32 “Build Forge Support Whitepaper”

6 REFERENCES

 Build Forge Online Help

 Special Thanks to

 Robert Haig (IBM Rational Build Forge)

 Kristofer A. Duer (IBM Rational Build Forge)

https://jazz.net/downloads/pages/rational-build-forge/7.1.2/M1/images/BuildForge-Help-712-M1.pdf

